Abstract

We discuss a method to achieve a polarization-independent modulation of the electromagnetic wavefront based upon the Pancharatnam-Berry phase. When the length of the twisted anisotropic material is equal to the birefringence length (i.e., full-wave plate length), a phase delay proportional to the squared transverse derivative of the twisting angle appears. Physically, the phase delay is associated with the Kapitza effect applied to the Pancharatnam-Berry phase. Our theoretical results are confirmed by finite-difference time-domain (FDTD)-based numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.