Abstract

Because of exhibiting extraordinary features, metamaterial absorbers have captured considerable attention in recent years, especially at visible frequencies. In this paper, a new design of a metamaterial-inspired perfect visible absorber (MIPVA) is investigated, which exhibits ultra-broadband, polarization-independent, and wide-angle performances. The proposed MIPVA provides a flat and near unity absorbance (>99%) in an ultra-broad range of radiation wavelengths from λ=500 to 625nm, while retaining its convincing absorptivity over the entire visible wavelengths. A comprehensive parametric study is accomplished to demonstrate the effects of structural parameters on the absorptivity of the designed MIPVA. To clarify the physical mechanism of absorption, the electric field and surface current distributions of MIPVA are also monitored and elaborately discussed throughout the paper. The results show that the proposed MIPVA exhibits a polarization-insensitive absorption behavior in a wide range of incident wave angles. The interference theory is also utilized to verify the results. In addition, our MIPVA has a compact and low-profile design, while its ability to absorb solar radiation is significantly improved with respect to preceding studies in terms of both the frequency bandwidth and absorptivity; thereby, it is a worthy candidate to play an essential role in different visible-range applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.