Abstract

We experimentally demonstrate reduction of the polarization sensitivity of a nonlinear optical loop mirror (NOLM) from 5 to 0.5 dB by use of 550 m of twisted dispersion-shifted fiber with a twist rate of 8 turns/m (24 turns/beat length). The twisting of the fiber induces circular birefringence and equates the parallel-and the orthogonal-polarization nonlinear phase-shift terms. Experimental results show that the polarization sensitivity monotonically decreases from 5 dB for nontwisted fiber to 0.5 dB for fiber that is twisted at a rate of 8 turns/m, and the twist rate should be more than 4 turns/m (>10 turns/beat length) for emulation of circularly polarized fiber. The minimum polarization sensitivity occurs when the control-pulse polarization is aligned with one of the eigenmodes of the twisted fiber. With the fiber twisted at a rate of 8 turns/m in the NOLM, the nonlinear transmission is 23% at a switching energy of 4 pJ/pulse. Simulations confirm the observed behavior and show that the remaining polarization sensitivity results from energy transfer between orthogonal modes of the signal pulse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call