Abstract

A high-conductivity two-dimensional (2D) hole gas is the enabler of wide-bandgap p-channel transistors. Compared to commonly used AlN template substrates with high dislocation densities, the recently available single-crystal AlN substrates are promising to boost the speed and power handling capability of p-channel transistors based on GaN/AlN 2D hole gases (2DHGs) thanks to the much lower dislocation densities and the absence of thermal boundary resistance. Using plasma-assisted molecular beam epitaxy, we report the observation of polarization-induced high-density 2DHGs in undoped pseudomorphic GaN/AlN heterostructures on the single-crystal AlN substrates with high structural quality and atomic steps on the surface. The high-density 2DHG persists down to cryogenic temperatures with a record high mobility exceeding 280 cm2/V s and a density of 2.2 × 1013/cm2 at 10 K. These results shed light on aspects of improving 2D hole mobilities and indicate significant potential of GaN/AlN 2DHG grown on bulk AlN substrates for future high performance wide-bandgap p-channel transistors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.