Abstract

Electron spins in gate-defined quantum dots (QDs) formed in semiconductor quantum wells (QWs) are promising stationary qubits for implementing large-scale quantum networks in a scalable manner. One key ingredient for such a network is an efficient photon–spin interface that converts any polarization state of a flying photonic qubit to the corresponding spins state of the electron in gate-defined QDs. A bull’s-eye cavity is an optical cavity structure that can enhance the photon absorption of an embedded gate-defined QD without polarization dependence. In this paper, we report the successful fabrication of air-bridge bull’s-eye cavities with metal electrodes and demonstrate the nearly polarization-independent optical absorption of a GaAs QW embedded in the cavities. This work marks an important step toward realizing an efficient photon–spin interface using gate-defined QDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call