Abstract

A THz band-reject filter is designed based on chiral four-fold rotational symmetry metamaterial. This filter was fabricated by laser micro-lens array lithography and characterized by terahertz time-domain spectroscopy. The resonant frequencies at different twist angles are almost the same, which demonstrates the polarization independence of the structure. The electric field distribution is simulated to explain the physics mechanism behind the polarization independence. By stacking multiple metamaterial layers together, a THz broadband reject filter at a bandwidth of 0.461 THz is experimentally achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call