Abstract

Jet precessions are widely involved in astrophysical phenomena from galaxies to X-ray binaries and gamma-ray bursts (GRBs). Polarization presents a unique probe of the magnetic fields in GRB jets. The precession of GRB relativistic jets will change the geometry within the observable emitting region of the jet, which can potentially affect the polarization of the afterglow. In this paper, we take into account jet precession to study the polarization evolution and corresponding light curves in GRB early optical afterglows with ordered and random magnetic field geometries. We find that the jet precession in long-lived engines can significantly reduce the polarization degree (PD) regardless of the magnetic field structure. The strongest PD attenuation is found when the line of sight is aligned with the precession axis. Our results show that jet precession can provide new insight into the low PD measured in the early optical afterglows of GRBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call