Abstract
Mueller matrix imaging contains abundant biological microstructure information and has shown promising potential in clinical applications. Compared with the ordinary unpolarized light microscopy that relies on the spatial resolution to reveal detailed histological features, Mueller matrix imaging encodes rich information on the microstructures even at low-resolution and wide-field conditions. Accurate staging of liver fibrosis is essential for the therapeutic diagnosis and prognosis of chronic liver diseases. In the clinic, pathologists commonly use semiquantitative numerical scoring systems to determine the stages of liver fibrosis based on the visualization of stained characteristic morphological changes, which require skilled staining technicians and well-trained pathologists. A polarization imaging based quantitative diagnostic method can help to reduce the time-consuming multiple staining processes and provide quantitative information to facilitate the accurate staging of liver fibrosis. In this study, we report a polarization imaging based radiomics approach to provide quantitative diagnostic features for the staging of liver fibrosis. Comparisons between polarization image features under a 4× objective lens with H&E image features under 4×, 10×, 20×, and 40× objective lenses were performed to highlight the superiority of the high dimensional polarization image features in the characterization of the histological microstructures of liver fibrosis tissues at low-resolution and wide-field conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.