Abstract

We investigate thin phase polarization holographic gratings recorded with two waves with orthogonal linear polarizations in materials in which illumination with linearly/circularly polarized light gives rise to linear/circular birefringence. The theoretical analysis shows that the presence of circular photoanisot-ropy changes significantly the diffraction characteristics of the gratings. The intensities of the waves diffracted in the +1 and -1 orders of diffraction and their ratio depend substantially on the reconstructing-wave polarization. Experiments with films of side-chain liquid-crystalline azobenzene polyester that is a photoanisotropic material of the considered type confirm the unusual polarization properties. It is shown that polarization holography may be used for real-time simultaneous measurement of photoinduced linear and circular birefringence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call