Abstract

We report on record high zero-bias external quantum efficiency (EQE) of 92% for back-illuminated Al0.40Ga0.60N p-i-n ultra-violet (UV) photodetectors on sapphire. The zero-bias responsivity measured 211 mA/W at 289 nm, which is the highest value reported for solar-blind, p-i-n detectors realized over any epitaxial wide band-gap semiconductor. This is also the first report for a p-i-n detector, where a polarization-graded Mg-doped AlGaN layer is utilized as the p-contact layer. The devices exhibited a ten-orders of magnitude rectification, a low reverse leakage current density of 1 nA/cm2 at 10 V, a high $\text{R}_{{0}}\text{A}$ product of $1.3\times 10^{{11}} \Omega $ .cm2 and supported fields exceeding 5 MV/cm. The light-to-dark current ratio and the UV-to-visible rejection ratio for the detectors exceeded six-orders of magnitude and the thermal noise limited detectivity (D*) measured $6.1\times 10^{{14}}$ cmHz1/2W−1. The state-of-the-art performance parameters can be attributed to a high crystalline quality absorbing AlGaN epi-layer resulting from the use of an AlN/AlGaN superlattice buffer and an improved p-contact via polarization grading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.