Abstract

Electric fatigue tests have been conducted on pure and manganese-modified Pb(In 0.5Nb 0.5)O 3–Pb(Mg 1/3Nb 2/3)O 3–PbTiO 3 (PIN–PMN–PT) single crystals along different crystallographic directions. Polarization degradation was observed to suddenly occur above 50–100 bipolar cycles in 〈1 1 0〉 oriented samples, while 〈0 0 1〉 oriented samples exhibited almost fatigue free characteristics. The fatigue behavior was investigated as a function of orientation, magnitude of the electric field and manganese dopant. It was found that 〈0 0 1〉 oriented PIN–PMN–PT crystals were fatigue free, due to its small domain size, being on the order of 1 μm. The 〈1 1 0〉 direction exhibited a strong electrical fatigue behavior due to mechanical degradation. Micro/macro cracks developed in fatigued 〈1 1 0〉 oriented single crystals. Fatigue and cracks were the result of strong anisotropic piezoelectric stress and non-180° domain switching, which completely locked the non-180° domains. Furthermore, manganese-modified PIN–PMN–PT crystals were found to show improved fatigue behavior due to an enhanced coercive field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call