Abstract

We report on the design and demonstration of polarization-engineered GaN/InGaN/GaN tunnel junction diodes with high current density and low tunneling turn-on voltage. Wentzel–Kramers–Brillouin calculations were used to model and design tunnel junctions with narrow band gap InGaN-based barrier layers. N-polar p-GaN/In0.33Ga0.67N/n-GaN heterostructure tunnel diodes were grown using molecular beam epitaxy. Efficient interband tunneling was achieved close to zero bias with a high current density of 118 A/cm2 at a reverse bias of 1 V, reaching a maximum current density up to 9.2 kA/cm2. These results represent the highest current density reported in III-nitride tunnel junctions and demonstrate the potential of III-nitride tunnel devices for a broad range of optoelectronic and electronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.