Abstract

Polarization in stars was first predicted by Chandrasekhar 1 , who calculated a substantial linear polarization at the stellar limb for a pure electron-scattering atmosphere. This polarization will average to zero when integrated over a spherical star but could be detected if the symmetry was broken, for example, by the eclipse of a binary companion. Nearly 50 years ago, Harrington and Collins 2 modelled another way of breaking the symmetry and producing net polarization—the distortion of a rapidly rotating hot star. Here we report the first detection of this effect. Observations of the linear polarization of Regulus, with two different high-precision polarimeters, range from +42 ppm at a wavelength of 741 nm to –22 ppm at 395 nm. The reversal from red to blue is a distinctive feature of rotation-induced polarization. Using a new set of models for the polarization of rapidly rotating stars, we find that Regulus is rotating at $$96.{5}_{-0.8}^{+0.6} \% $$ of its critical angular velocity for break-up, and has an inclination greater than 76.5°. The rotation axis of the star is at a position angle of 79.5 ± 0.7°. The conclusions are independent of, but in good agreement with, the results of previously published interferometric observations of Regulus 3 . The accurate measurement of rotation in early-type stars is important for understanding their stellar environments 4 and the course of their evolution 5 . The polarization resulting from electron scattering in a stellar atmosphere has been detected towards the rapidly spinning star Regulus. Deformation of the star from spherical allows this effect to be seen, fulfilling a prediction from around 50 years ago.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call