Abstract

Many animals have visual systems that exploit the polarization of light, and some of these systems are thought to compute difference signals in parallel from arrays of photoreceptors optimally tuned to orthogonal polarizations. We hypothesize that such polarization-difference systems can improve the visibility of objects in scattering media by serving as common-mode rejection amplifiers that reduce the effects of background scattering and amplify the signal from targets whose polarization-difference magnitude is distinct from the background. We present experimental results obtained with a target in a highly scattering medium, demonstrating that a manmade polarization-difference system can render readily visible surface features invisible to conventional imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.