Abstract
The use of polarized light as an approach to further control the extraordinary transmission (EOT) through nanostructured metallic films has recently gained attention. In this work, it is shown that aperture shape and orientation not only determine the intensity of the polarized light emitted, corroborating the previous work of others, but also can be used to spectrally tune the relative peak intensity of surface plasmon polaritons modes. The high extinction ratio of high aspect ratio apertures lends itself to the creation of micron sized structures that emit at different wavelengths depending upon the orientation of linearly polarized incident light. This has many potential applications including the prospect of color shifting pixels for high definition television (HDTV) and thin film electroluminescent (TFEL) devices as well as novel polarization mode dispersion control components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.