Abstract
The surface structure of oxide-supported metal nanoparticles can be determined via characteristic vibrations of adsorbed probe molecules such as CO. Usually, spectroscopic studies focus on peak position and intensity, which are related to binding geometries and number of adsorption sites, respectively. Employing two differently prepared model catalysts, it is demonstrated that polarization-dependent sum-frequency-generation (SFG) spectroscopy reveals the average surface structure and shape of the nanoparticles. SFG results for different particle sizes and morphologies are compared to direct real-space structure analysis by TEM and STM. The described feature of SFG could be used to monitor particle restructuring in situ and may be a valuable tool for operando catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.