Abstract

We report on the experimental observation of a decreased self-injection threshold by using laser pulses with circular polarization in laser wakefield acceleration experiments in a nonpreformed plasma, compared to the usually employed linear polarization. A significantly higher electron beam charge was also observed for circular polarization compared to linear polarization over a wide range of parameters. Theoretical analysis and quasi-3D particle-in-cell simulations reveal that the self-injection and hence the laser wakefield acceleration is polarization dependent and indicate a different injection mechanism for circularly polarized laser pulses, originating from larger momentum gain by electrons during above threshold ionization. This enables electrons to meet the trapping condition more easily, and the resulting higher plasma temperature was confirmed via spectroscopy of the XUV plasma emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call