Abstract

A method is brought forward for realizing polarization dependent devices by employing sub-wavelength asymmetrical hole array on a metallic film. Based on the fundamental mode approximation, the phase retardations of rectangular hole for two orthogonal polarization incident waves are analyzed and calculated. Using rectangular hole array, a bifocal-polarization lens for the infrared radiation with 10.6 microm wavelength is designed. Its focal lengths for x- and y- polarized incident wave are examined by the finite difference time domain (FDTD) method and the Rayleigh-Sommerfeld diffraction integrals and the obtained results agree well with the designed values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.