Abstract

A ZnCrO layer grown on a Pt (111)/Al2O3 (0001) substrate exhibits a lattice displacement-induced ferroelectric behavior due to a modulation in the lattice translation symmetry. The top-to-bottom Pt/ZnCrO/Pt structure shows asymmetric hysteresis loops in positive and negative voltage bias regions. This is attributed to a change in the Schottky emission rate due to the nonlinear polarization of the ZnCrO barrier. The characteristics of the hysteresis loops depend on the film-textures of ZnCrO, which vary with the oxygen partial pressure during the growth stage of the ZnCrO layers. The results suggest that ZnCrO has efficacy characteristics for applications in the non-volatile resistive-switching systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.