Abstract

Phase retrieval is a noninterferometric quantitative phase imaging technique that has become an essential tool in optical metrology and label-free microscopy. Phase retrieval techniques require multiple intensity measurements traditionally recorded by camera or sample translation, which limits their applicability mostly to static objects. In this work, we propose the use of a single polarization-dependent all-dielectric metasurface to facilitate the simultaneous recording of two images, which are utilized in phase calculation based on the transport-of-intensity equation. The metasurface acts as a multifunctional device that splits two orthogonal polarization components and adds a propagation phase shift onto one of them. As a proof-of-principle, we demonstrate the technique in the wavefront sensing of technical samples using a standard imaging setup. Our metasurface-based approach fosters a fast and compact configuration that can be integrated into commercial imaging systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.