Abstract

Enhancing the lateral resolution limit in optical microscopy and interferometry is of great interest in recent research. In order to laterally resolve structures including feature dimensions below the resolution limit, microspheres applied in the optical near-field of the specimen are shown to locally improve the resolution of the imaging system. Experimental and simulated results following this approach obtained by a high NA Linnik interferometer are analyzed in this contribution. For further understanding of the transfer characteristics, measured interference data are compared with FEM (finite element method) based simulations with respect to the polarization dependency of the relevant image information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.