Abstract
We demonstrate a polarization conversion system by utilizing the polarization-splitting function of a liquid-crystal (LC) geometric-phase-based cylindrical lens. The system was constructed by combining the LC lens with a partially rubbed cell. The operation principle includes the following two steps. (i) The incident light is first decomposed into right- and left-handed circularly polarized light (RCP and LCP, respectively) as an attribute of geometric-phase-based optical elements. (ii) Then, only the RCP light is transformed into LCP light by passing it through the partially rubbed cell; as a result, the incident unpolarized light is converted into LCP light. We experimentally reveal the feasibility of the system by evaluating the effects, on the polarization conversion capability, of the diffraction efficiency, focal length, and partially rubbed cell’s retardation. The polarization conversion efficiency was obtained to be 65% on average for 400–700 nm and a maximum of 79% at 610 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.