Abstract
Smart electronic circuits that support neuromorphic computing on the hardware level necessitate materials with memristive, memcapacitive, and neuromorphic- like functional properties; in short, the electronic response must depend on the voltage history, thus enabling learning algorithms. Here we demonstrate volatile ferroelectric switching of Sn2P2S6 at room temperature and see that initial polarization orientation strongly determines the properties of polarization switching. In particular, polarization switching hysteresis is strongly imprinted by the original polarization state, shifting the regions of non-linearity toward zero-bias. As a corollary, polarization switching also enables effective capacitive switching, approaching the sought-after regime of memcapacitance. Landau–Ginzburg–Devonshire simulations demonstrate that one mechanism by which polarization can control the shape of the hysteresis loop is the existence of charged domain walls (DWs) decorating the periphery of the repolarization nucleus. These walls oppose the growth of the switched domain and favor back-switching, thus creating a scenario of controlled volatile ferroelectric switching. Although the measurements were carried out with single crystals, prospectively volatile polarization switching can be tuned by tailoring sample thickness, DW mobility and electric fields, paving way to non-linear dielectric properties for smart electronic circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.