Abstract
Future spintronics and quantum technologies will require a portfolio of techniques for manipulating electron spins in functional nanodevices. Especially, the establishment of the methods to control spin current is the key ingredient essential for the transfer and processing of information, enabling faster and low-energy operation. However, a universal method for manipulating spin currents with full-directional controllability and tunable magnitude has not been established. Here we show that an artificial material called a magnetic metamaterial (MM), which possesses a novel spintronic functionality not exhibited by the original substance, generates photo-driven ultrafast spin currents at room temperature via the magneto-photogalvanic effect. By tuning the polarization state of the excitation light, these spin currents can be directed with tunable magnitude along an arbitrary direction in the two-dimensional plane of the MM. This new concept may guide the design and creation of artificially engineered opto-spintronic functionalities beyond the limitations of conventional material science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.