Abstract
We present that modulation of fluorescence emission by linearly polarized excitation light can allow us to resolve spatially two fluorescent molecules within a diffraction limit and to determine simultaneously their precise dipole directions. Using polarization-dependent photoswitching, we imaged the 2D geometry of the DNA Holliday junction in a 10-nm length scale by measuring both the distance and the in-plane dipole angle between Cy3 emitters stacked onto the ends of two adjacent branches of the Holliday junction. The proposed polarization-modulated imaging technique provides a simple and nonstochastic imaging process to visualize the nanostructure, including directional information, of biomolecules beyond the diffraction limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.