Abstract

We report the concept and development of a Ka-band mode and polarization converter that efficiently converts a TE10 rectangular waveguide mode into either a linearly or a circularly polarized TE21 cylindrical waveguide mode. The converter is composed of a power-dividing section, a mode-converting section, and a polarization-transitioning section. The converting process in each section is displayed and the working principles are discussed. A prototype has been built and tested. The measured results agree well with the numerical calculations for both linear and circular polarizations. The measured optimum back-to-back transmission is 94% with a 1-dB bandwidth of 4.1 GHz for the linear polarization. As for the circular polarization, the measured optimum transmission is 97%, but the corresponding bandwidth is indistinct due to some resonant dips. The reasons and impact for the dips are discussed. A bandwidth of 3.9 GHz is obtained for a single circular converter; meanwhile, an approach to eliminating these unwanted dips is presented in theory. For further diagnostics, the field pattern of either polarization is directly displayed on a temperature-sensitive liquid crystal display sheet, where the electric field strength can be discerned from the color spectrum. In addition to high conversion efficiency and broad bandwidth, this converter features easy construction, high mode purity, and polarization controllability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.