Abstract

We study polarization switching and transverse-mode competition in vertical-cavity surface-emitting lasers (VCSELs) in the absence of temperature effects. We use a model that incorporates the vector nature of the laser field, saturable dispersion, different carrier populations associated with different magnetic sublevels of the conduction and heavy hole valence bands in quantum-well media, spin-flip relaxation processes and cavity birefringence and dichroism. We consider both index- and gain-guided VCSELs and we find that spin-flip dynamics and the linewidth enhancement factor are crucial for the selection of the polarization state corresponding to a given injection current. For index-guided VCSELs the effect of spatial hole burning on the polarization behaviour within the fundamental mode regime is discussed. For gain-guided VCSELs, transverse-mode and polarization selection are studied within a Maxwell - Bloch approximation which includes field diffraction and carrier diffusion. Polarization switching is found in the fundamental mode regime. The first-order transverse mode starts lasing orthogonally polarized to the fundamental mode. At larger currents polarization coexistence with several active transverse modes occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.