Abstract

High-quality BaTiO3 films with thicknesses ranging from 2.9to175nm were grown epitaxially on SrRuO3-covered (001)-oriented SrTiO3 substrates by high-pressure sputtering. The crystal structure of these films was studied by conventional and synchrotron x-ray diffraction. The in-plane and out-of-plane lattice parameters were determined as a function of film thickness by x-ray reciprocal space mapping around the asymmetric (1¯03) Bragg reflection. BaTiO3 films were found to be fully strained by the SrTiO3 substrate up to a thickness of about 30nm. Ferroelectric capacitors were then fabricated by depositing SrRuO3 top electrodes, and the polarization-voltage hysteresis loops were recorded at the frequencies 1–30kHz. The observed thickness effect on the lattice parameters and polarization in BaTiO3 films was analyzed in the light of strain and depolarizing-field effects using the nonlinear thermodynamics theory. The theoretical predictions are in reasonable agreement with the measured thickness dependences, although the maximum experimental values of the spontaneous polarization and the out-of-plane lattice parameter exceed the theoretical estimates (43μC∕cm2 vs 35μC∕cm2 and 4.166Å vs 4.143Å). Possible origins of the revealed discrepancy between theory and experiment are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.