Abstract

AbstractThe diverse design freedom and mechanisms of metasurfaces motivate the manipulation of polarization in an ultrashort distance with subwavelength resolution and make metasurfaces outperform conventional polarization optical elements. However, in order to enhance the information capability and encryption security of metasurface holograms, polarization manipulation together with multiplexing technologies are still highly desired. Here, a birefringent dielectric metasurface with the capability of encoding a grayscale image in real‐space based on Malus's law by utilizing the inhomogeneous polarization distribution and realizing the reconstruction of a vectorial holographic image in k‐space with the help of the phase profiles of different polarization components of output light is demonstrated. This novel functionality is realized by exploiting the manipulation of polarization and phase of output light simultaneously offered by the dielectric metasurface. The proposed method may enhance the information capability and security level of applications such as the anticounterfeiting and encryption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.