Abstract

We present a novel scheme to construct a polarizable force field for liquid/solid interfaces, which takes into account the effect of the surface polarity induced by liquid-solid interactions explicitly. We extend the charge response kernel (CRK) method for molecules to solid surfaces by introducing the surface CRK. The CRK parameters are systematically determined by the first-principles calculations in the slab model with the dipole-correction method. Our methodology is applied to the water/clean rutile TiO2(110) interface. Structures and induced charges of a single water molecule attached to the TiO2 surface optimized by our polarizable force field show good agreement with those predicted by the first-principles calculations. Further, we carried out MD simulations for the liquid water/TiO2 interface and found three stable structures of water attached to the TiO2 surface. Two of them are predicted by both the polarizable and the nonpolarizable force fields, while the polarizable force field model predicts a structure of water with the hydrogen and oxygen atoms interacting with the oxygen atom of the surface TiO2 and the hydrogen atom of the other water molecule, respectively, which was reported by the previous first-principles MD simulation. This indicates that the dipole moments of water and TiO2 induced by the water-TiO2 interactions have significant impact on molecular conformations of the water/TiO2 interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.