Abstract

We report a polarizable subsystem density functional theory to describe electronic properties of molecules embedded on a metal cluster. Interaction between the molecule and metal cluster is described using frozen density embedding (FDE). Substituting the nonadditive kinetic potential (NAKP) by approximate functionals is circumvented by enforcing external orthogonality (EO) through a projection operator. The computationally expensive freeze/thaw (FT) cycles are bypassed by including a polarization term in the embedding operator. Furthermore, the combination of polarization and EO permits supermolecular basis set calculations, which was not possible for strongly interacting systems with existing kinetic energy functionals. To test the method, we described the ground state density of pyridine, water, and benzene on a silver cluster. Performing FT on top of EO results in exact density embedding for this category of systems and is thus used for benchmarking the method. We find that the density is reproduced to within 0.15e, and the dipole and quadrupole moments are within 18% of the reference points for subsystem separations ranging from bonding to noninteracting distances. Additionally, our formalism allows the flexibility of incorporating different density functionals to the molecular and the metallic subsystems reducing the overall computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.