Abstract

Recent interest in polarizable embedding methods for electronic excited states has so far been focused on optical absorption and emission spectra calculations. To explore the suitability of these methods for excited-state reactions, we constructed a simple molecular system with an electronic crossing coupled to a polarizable species: the triatomic LiFBe. We found that current polarizable QM/MM methods inadequately describe the potential energy surfaces in this system, particularly close to the electronic crossing, so we developed a new polarizable embedding method called dynamically weighted polarizable QM/MM. The new method reproduces the potential energy surfaces of LiFBe from full-system multireference configuration interaction singles and doubles calculations with near-quantitative accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.