Abstract

We analyze the performance of the polarizable density embedding (PDE) model-a new multiscale computational approach designed for prediction and rationalization of general molecular properties of large and complex systems. We showcase how the PDE model very effectively handles the use of large and diffuse basis sets that are otherwise questionable-due to electron spill-out effects-in standard embedding models. Based on our analysis, we find the PDE model to be robust and much more systematic than less sophisticated focused embedding models, and thus outline the PDE model as a very efficient and accurate approach to describe the electronic structure of ground and excited states as well as molecular properties of complex, heterogeneous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.