Abstract

The linear uniform field electric dipole polarizability tensors of 46 fullerenes in the range C[sub 20] through C[sub 240] are calculated by the Olson-Sundberg atom monopole-dipole interaction (AMDI) theory, using the monopole and dipole polarizabilities of the carbon atom found previously to fit polarizability tensors of aromatic hydrocarbons. The structures are taken to be those predicted by Zhang and co-workers by molecular dynamics energy optimization. The isotropic mean polarizabilities calculated for C[sub 60] and C[sub 70] are comparable to experimental data from solid film studies and to quantum mechanical calculations. Polarizability tensors are also calculated for conducting ellipsoidal shells which have the same moment of inertia tensor as the corresponding fullerenes. These are substantially smaller than the AMDI polarizabilities for the smaller fullerenes, but the two calculations tend to converge for the larger molecules. 26 refs., 1 fig., 2 tabs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.