Abstract
The real-time and differentiated visualization of the organelles is favorable for exploring the distribution and interaction. However, most visual probes emit monochromatic fluorescence and target a single organelle, which impedes the in-depth study of their interplay. To overcome this obstacle, we tactfully conceived a polarity-sensitive fluorescent DPDO-C that could accurately discriminate polarity changes in the cellular environment, exhibiting distinct fluorescence in lipid droplets (LDs) and mitochondria. Remarkably, the probe DPDO-C could migrate from mitochondria to LDs with the assistance of reactive oxygen species, which was conducive to further monitoring of the number and size of LDs as well as the interactions between LDs and other organelles. Moreover, the nuanced difference between normal and fatty liver tissues was also distinguished by two-color fluorescence imaging, which could act as a promising candidate for the early diagnosis of fatty liver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.