Abstract
Above-band-gap optical excitation of electron-hole pairs screens the doping-induced surface electric field and generates terahertz (THz) pulses via free-carrier transport. THz emission from a heavily doped silicon surface is much weaker than that of lightly doped samples. A polarity reversal of the THz electric field is observed in heavily doped p-type silicon, indicating that the doping related and carrier induced surface electric fields oppose each other. By comparing the penetration depth of the excitation laser with the thickness of the depletion layer for the doped silicon, it is shown that competition between diffusion and drift current causes the polarity reversal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.