Abstract

Necturus gallbladder epithelial cells respond to the presence of a hypertonic perfusate in either bathing solution by first shrinking due to osmotic water loss and then swelling back to their original volume (volume-regulatory increase). Previous investigations involving increases in the osmolality of the mucosal bath had suggested that volume-regulatory increase was due to the activation of ion exchangers in the apical cell membrane. In the present study the sidedness of the transport processes involved in volume-regulatory increase was investigated. The osmolality of the serosal bath was increased by 18% either in the absence of HCO3- or when an inhibitor of volume-regulatory increase, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), was added to the mucosal or serosal bath. Volume regulation was HCO3- dependent. DIDS was only effective in inhibiting volume regulation when it was added to mucosal bathing solution, suggesting that volume-regulatory increase depended on transport across the apical membrane. Volume-regulatory increase could also be activated by first swelling the cells in hypotonic solution and then returning the tissue to control Ringer solution. The volume-regulatory increase that occurred upon return to control Ringer was also shown to be sensitive to DIDS in the mucosal bath.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call