Abstract
We show that for a wide class of Gaussian random fields, points are polar in the critical dimension. Examples of such random fields include solutions of systems of linear stochastic partial differential equations with deterministic coefficients, such as the stochastic heat equation or wave equation with space–time white noise, or colored noise in spatial dimensions $k\geq1$. Our approach builds on a delicate covering argument developed by M. Talagrand [Ann. Probab. 23 (1995) 767–775; Probab. Theory Related Fields 112 (1998) 545–563] for the study of fractional Brownian motion, and uses a harmonizable representation of the solutions of these stochastic PDEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.