Abstract

The bacterial cell pole has long been recognized as a defined compartment for enzymatic activities that are important or even vital for the cell. Polarity of diguanylate cyclases and phosphodiesterases, enzymes that synthesize and degrade the second messenger c-di-GMP, has now been demonstrated for several bacterial systems. Here we review these polar regulatory systems and show how the asymmetry of c-di-GMP production and turnover in concert with different modes of activation and deactivation creates heterogeneity in cellular c-di-GMP levels. We highlight how this heterogeneity generates a diverse set of phenotypic identities or states and how this may benefit the cell population, and we discuss reasons why the polarity of c-di-GMP signaling is probably widespread among bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.