Abstract

The polarity of GaN grown by plasma-assisted molecular beam epitaxy was inverted from N-face to Ga-face by simultaneously exposing the surface to Mg and activated N fluxes during a growth interruption at a reduced substrate temperature. Growth studies suggested that a MgxNy compound was responsible for inverting the crystal. The change in polarity was verified in situ by reflection high energy electron diffraction via GaN surface reconstructions, and ex situ by convergent beam electron diffraction and KOH etch studies. The surface of the inverted material showed smooth step flow features. Ga-face high electron mobility transistors with good dc and small signal performance were fabricated on the inverted epilayers. A drain-source current of 0.84 A/mm was measured at a gate-source voltage of +1 V. Current-gain cutoff and maximum oscillation frequencies of 22 and 53 GHz, respectively, were measured in these devices. The device performance is similar to that of Ga-face transistors with comparable dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.