Abstract

The ability to control the polarity of an all-sputtered epitaxial GaN/AlN/Al film on a Si(111) substrate via intermediate oxidization was investigated. A stable surface of GaN on a Si substrate is a N-terminated surface (−c surface); hence, for electric device applications, the Ga-terminated surface (+c surface) is preferable. The GaN/AlN/Al film on Si(111) showed a −c surface, as confirmed by time-of-flight low-energy atom scattering spectroscopy (TOFLAS) and X-ray photoelectron spectroscopy (XPS). The AlN layer was intentionally oxidized via air exposure during film growth. The GaN surface subjected to the oxidization process had the +c surface. Secondary-ion mass spectrometry measurements indicated a high oxygen concentration after the intentional oxidization. However, the intentional oxidization degraded the crystallinity of the GaN/AlN layer. By changing the oxidization point and repeating the GaN/AlN growth, the crystallinity of GaN was recovered. Such polarity control of GaN on Si grown by sputtering shows strong potential for the fabrication of large-diameter +c-GaN template substrates at low cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.