Abstract
We develop a concept for a waveguide that exploits spatial control of nonlinear surface-polaritonic waves. Our scheme includes an optical cavity with four-level $\text{N}$-type atoms in a lossless dielectric placed above a negative-index metamaterial layer. We propose exciting a polaritonic Akhmediev breather at a certain position of the interface between the atomic medium and the metamaterial by modifying laser-field intensities and detunings. Furthermore, we propose generating position-dependent polaritonic frequency combs by engineering widths of the electromagnetically induced transparency window commensurate with the surface-polaritonic modulation instability. Therefore, this waveguide acts as a high-speed polaritonic modulator and position-dependent frequency-comb generator, which can be applied to compact photonic chips.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.