Abstract

The excitonic and photonic states in distributed feedback (DFB) microcavities may strongly couple to form DFB cavity polaritons, provided that excitonic oscillator strength is large enough. In this paper we theoretically analyse the optical properties of DFB microcavities related to polariton effect. A numerical method based on scattering matrix formalism has been developed to solve the Maxwell's equations for layered system with periodical patterning of layers. To incorporate polaritonic effect in our model we included the exciton poles in dielectric susceptibility of one of the patterned layers. Using this method we reproduce the characteristic features, demonstrated in recent experiments [Fujita et al.: Phys. Rev. B 57 (1998) 12428], such as anticrossing behavior of transmission dips in vicinity of the excitonic resonance and strong polarization dependence of their position and depth. ©2001 The Physical Society of Japan

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.