Abstract

Enhanced delocalization is beneficial for absorbing molecules in organic solar cells, and in particular bilayer devices, where excitons face small diffusion lengths as a barrier to reaching the charge-generating donor-acceptor interface. As hybrid light-matter states, polaritons offer exceptional delocalization which could be used to improve the efficiency of bilayer organic photovoltaics. Polariton delocalization can aid in delivering excitons to the donor-acceptor interface, but the subsequent charge transfer event must compete with the fast decay of the polariton. To evaluate the viability of polaritons as tools to improve bilayer organic solar cells, we studied the decay of the lower polariton in three cavity systems: a donor only, a donor-acceptor bilayer, and a donor-acceptor blend. Using several spectroscopic techniques, we identified an additional decay pathway through charge transfer for the polariton in the bilayer cavity, demonstrating charge transfer from the polariton is fast enough to outcompete the decay to the ground state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.