Abstract

This paper gives a detailed description of a high-performance polariton condensate for a quantum mechanical two-level system (TLS). We propose a transition metal dichalcogenides (TMDs) setup and theoretically carry out the spectroscopy of these polariton condensates. Through theoretical and numerical analysis, we obtain many features in two dimensional (2D) multilayer TMDs. We compute the energy of the system and the Landau-Zener-Stückelberg (LZS) quantum tunneling probability under the effect of a sequence of laser light. At certain critical 2D TMDs parameters, the system exhibits a multi-crossing scenario in a privileged position of 2D multilayer TMDs. We predict the consecutive modulations and highlight the conservation of the LZS interference patterns mapped from the 2D TMDs system. At weak coupling regime, a successful conversion of interferometry signals is identified for some values of laser frequency. We explain such a result as a valley sensitive cavity rate model due to coherent exchange and incoherent scattering, meaning that polariton condensate is formed in the valley around the Brillouin zone. The latter is used quantitatively and qualitatively to achieve high-precision measurements beyond that of its elementary constituents. The obtained results confirm that has the highest sensitivity to radiation field as compared to other 2D multilayer TMDs materials. Therefore, stands as an appropriate candidate among other 2D TMDs to form polariton condensates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call