Abstract

Polarisers are one of the most widely used devices in optical set-ups. They are commonly used with paraxial beams that propagate in the normal direction of the polariser plane. Nevertheless, the conventional projection character of these devices may change when the beam impinges a polariser with a certain angle of incidence. This effect is more noticeable if polarisers are used in optical systems with a high numerical aperture, because multiple angles of incidence have to be taken into account. Moreover, the non-transverse character of highly focused beams makes the problem more complex and strictly speaking, the Malus’ law does not apply. In this paper we develop a theoretical framework to explain how ideal polarisers affect the behavior of highly focused fields. In this model, the polarisers are considered as birefringent plates, and the vector behaviour of focused fields is described using the plane-wave angular spectrum approach. Experiments involving focused fields were conducted to verify the theoretical model and a satisfactory agreement between theoretical and experimental results was found.

Highlights

  • The paper is organized as follows: First, we develop a theoretical model for polarisers based on uniaxial anisotropic media

  • The electric field distribution in the focal region of a high numerical aperture optical system is given by the Richards-Wolf integral[26]

  • The longitudinal component is modified and polarisers do not behave as projectors when interact with focused fields; the usual Malus’ law does not strictly apply

Read more

Summary

Objectives

The objective of this paper is to analyse the effect of an ideal polariser on a highly focused field

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.