Abstract

Wave propagation is studied in a general anisotropic poroelastic solid saturated with a viscous fluid flowing through its pores of anisotropic permeability. The extended version of Biot’s theory is used to derive a system of modified Christoffel equations for the propagation of plane harmonic waves in such media. The non-trivial solution of this system is ensured by a biquadratic equation whose roots represent the complex velocities of four attenuating quasi-waves in the medium. These complex velocities define phase velocity and attenuation of each quasi-wave propagating along a given phase direction in three-dimensional space. The solution itself defines the polarisations of the quasi-waves along with phase shift. The variations of polarisations of quasi-waves with their phase direction, are computed for a realistic numerical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.