Abstract

Context. Astronomical masers have been effective tools in the study of magnetic fields for years. Observations of the linear and circular polarisation of different maser species allow for the determination of magnetic field properties, such as morphology and strength. In particular, methanol can be used to probe different parts of protostars, such as accretion discs and outflows, since it produces one of the strongest and the most commonly observed masers in massive star-forming regions. Aims. We investigate the polarisation properties of selected methanol maser transitions in light of newly calculated methanol Landé g-factors and in consideration of hyperfine components. We compare our results with previous observations and evaluate the effect of preferred hyperfine pumping and non-Zeeman effects. Methods. We ran simulations using the radiative transfer code, CHAMP, for different magnetic field values, hyperfine components, and pumping efficiencies. Results. We find a dependence between the linear polarisation fraction and the magnetic field strength as well as the hyperfine transitions. The circular polarisation fraction also shows a dependence on the hyperfine transitions. Preferred hyperfine pumping can explain some high levels of linear and circular polarisation and some of the peculiar features seen in the S-shape of observed V-profiles. By comparing a number of methanol maser observations taken from the literature with our simulations, we find that the observed methanol masers are not significantly affected by non-Zeeman effects related to the competition between stimulated emission rates and Zeeman rates, such as the rotation of the symmetry axis. We also consider the relevance of other non-Zeeman effects that are likely to be at work for modest saturation levels, such as the effect of magnetic field changes along the maser path and anisotropic resonant scattering. Conclusions. Our models show that for methanol maser emission, both the linear and circular polarisation percentages depend on which hyperfine transition is masing and the degree to which it is being pumped. Since non-Zeeman effects become more relevant at high values of brightness temperatures, it is important to obtain good estimates of these quantities and the maser beaming angles. Better constraints on the brightness temperature will help improve our understanding of the extent to which non-Zeeman effects contribute to the observed polarisation percentages. In order to detect separate hyperfine components, an intrinsic thermal line width that is significantly smaller than the hyperfine separation is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.