Abstract

Ultra-cool dwarfs of the L spectral type (Teff=1400-2200K) are known to have dusty atmospheres. Asymmetries of the dwarf surface may arise from rotationally-induced flattening and dust-cloud coverage, and may result in non-zero linear polarisation through dust scattering. We aim to study the heterogeneity of ultra-cool dwarfs' atmospheres and the grain-size effects on the polarisation degree in a sample of nine late M, L and early T dwarfs. We obtain linear polarimetric imaging measurements using FORS1 at the Very Large Telescope, in the Bessel I filter, and for a subset in the Bessel R and the Gunn z filters. We measure a polarisation degree of (0.31+/-0.06)% for LHS102BC. We fail to detect linear polarisation in the rest of our sample, with upper-limits on the polarisation degree of each object of 0.09% to 0.76% (95% CL). For those targets we do not find evidence of large-scale cloud horizontal structure in our data. Together with previous surveys, our results set the fraction of ultra-cool dwarfs with detected linear polarisation to (30+10-6)% (1-sigma). For three brown dwarfs, our observations indicate polarisation degrees different (at the 3-sigma level) than previously reported, giving hints of possible variations. Our results fail to correlate with the current model predictions for ultra-cool dwarf polarisation for a flattening-induced polarisation, or with the variability studies for a polarisation induced by an hetereneous cloud cover. This stresses the intricacy of each of those tasks, but may as well proceed from complex and dynamic atmospheric processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.