Abstract
AbstractThe polarimetry of the light scattered by planetary surfaces is a powerful tool to provide constraints on their microstructure. To improve the interpretation of polarimetric data from icy surfaces, we have developed the POLarimeter for ICE Samples complementing the measurement facilities of the Ice Laboratory at the University of Bern. The new setup uses a high precision Stokes polarimeter to measure the degree of polarization in the visible light scattered by surfaces at moderate phase angles (from 1.5° to 30°). We present the photometric and polarimetric phase curves measured on various surfaces made of pure water ice particles having well‐controlled size and shape (spherical, crushed, and frost). The results show how the amplitude and the shape of the negative polarization branch change with the particles sizes and the degree of metamorphism of the ice. We found that fresh frost formed by water condensation on cold surfaces has a phase curve characterized by resonances (Mie oscillations) indicating that frost embryos are transparent micrometer‐sized particles with a narrow size distribution and spherical shape. Comparisons of these measurements with polarimetric observations of the icy satellites of the Solar System suggest that Europa is possibly covered by relatively coarser (~40–400 μm) and more sintered grains than Enceladus and Rhea, more likely covered by frost‐like particles of few micrometers in average. The great sensitivity of polarization to grain size and degree of sintering makes it an ideal tool to detect hints of ongoing processes on icy planetary surfaces, such as cryovolcanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.